IELTS Test 24 2020

Reading Test

Answer Keys
1 YES
2 YES
3 NOT GIVEN
4 NO
5 YES
6 C
7 D
8 B
9 D
10 A
11 B
12 C
13 A
14 C
15 A
16 B
17 F
18 D
19 B
20 F
21 D
22 A

READING PASSAGE 1

You should spend about 20 minutes on Questions 1-13, which are based on Reading Passage 1 below.

How to Spot a Liar

However much we may abhor it, deception comes naturally to all living things. Birds do it by feigning injury to lead hungry predators away from nesting young. Spider crabs do it by disguise: adorning themselves with strips of kelp and other debris, they pretend to be something they are not – and so escape their enemies. Nature amply rewards successful deceivers by allowing them to survive long enough to mate and reproduce. So it may come as no surprise to learn that human beings- who, according to psychologist Gerald Johnson of the University of South California, or lied to about 200 times a day, roughly one untruth every 5 minutes- often deceive for exactly the same reasons: to save their own skins or to get something they can’t get by other means.
But knowing how to catch deceit can be just as important a survival skill as knowing how to tell a lie and get away with it. A person able to spot falsehood quickly is unlikely to be swindled by an unscrupulous business associate or hoodwinked by a devious spouse. Luckily, nature provides more than enough clues to trap dissemblers in their own tangled webs- if you know where to look. By closely observing facial expressions, body language and tone of voice, practically anyone can recognise the tell-tale signs of lying. Researchers are even programming computers – like those used on Lie Detector -to get at the truth by analysing the same physical cues available to the naked eye and ear. “With the proper training, many people can learn to reliably detect lies,” says Paul Ekman, professor of psychology at the University of California, San Francisco, who has spent the past 15 years studying the secret art of deception.
In order to know what kind of Lies work best, successful liars need to accurately assess other people’s emotional states. Ackman’s research shows that this same emotional intelligence is essential for good lie detectors, too. The emotional state to watch out for is stress, the conflict most liars feel between the truth and what they actually say and do.
Even high-tech lie detectors don’t detect lies as such; they merely detect the physical cues of emotions, which may or may not correspond to what the person being tested is saying. Polygraphs, for instance, measure respiration, heart rate and skin conductivity, which tend to increase when people are nervous – as they usually are when lying. Nervous people typically perspire, and the salts contained in perspiration conducts electricity. That’s why sudden leap in skin conductivity indicates nervousness -about getting caught, perhaps -which makes, in turn, suggest that someone is being economical with the truth. On the other hand, it might also mean that the lights in the television Studio are too hot- which is one reason polygraph tests are inadmissible in court. “Good lie detectors don’t rely on a single thing” says Ekma ,but interpret clusters of verbal and non-verbal clues that suggest someone might be lying.”
The clues are written all over the face. Because the musculature of the face is directly connected to the areas of the brain that processes emotion, the countenance can be a window to the soul. Neurological studies even suggest that genuine emotions travel different pathways through the brain than insincere ones. If a patient paralyzed by stroke on one side of the face, for example, is asked to smile deliberately, only the mobile side of the mouth is raised. But tell that same person a funny joke, and the patient breaks into a full and spontaneous smile. Very few people -most notably, actors and politicians- are able to consciously control all of their facial expressions. Lies can often be caught when the liars true feelings briefly leak through the mask of deception. We don’t think before we feel, Ekman says. “Expressions tend to show up on the face before we’re even conscious of experiencing an emotion.”
One of the most difficult facial expressions to fake- or conceal, if it’s genuinely felt - is sadness. When someone is truly sad, the forehead wrinkles with grief and the inner corners of the eyebrows are pulled up. Fewer than 15% of the people Ekman tested were able to produce this eyebrow movement voluntarily. By contrast, the lowering of the eyebrows associated with an angry scowl can be replicated at will but almost everybody. “ If someone claims they are sad and the inner corners of their eyebrows don’t go up, Ekmam says, the sadness is probably false.”
The smile, on the other hand, is one of the easiest facial expressions to counterfeit. It takes just two muscles -the zygomaticus major muscles that extend from the cheekbones to the corners of the lips- to produce a grin. But there’s a catch. A genuine smile affects not only the corners of the lips but also the orbicularis oculi, the muscle around the eye that produces the distinctive “crow’s feet” associated with people who laugh a lot. A counterfeit grin can be unmasked if the corners of the lips go up, the eyes crinkle, but the inner corners of the eyebrows are not lowered, a movement controlled by the orbicularis oculi that is difficult to fake. The absence of lowered eyebrows is one reason why the smile looks so strained and stiff.
SECTION 1: QUESTIONS 1-13

Questions 1-5

1 All living animals can lie.


2 Some people tell lies for self-preservation.



3  Scientists have used computers to analyze which part of the brain is responsible for telling lies.




4  Lying as a survival skill is more important than detecting a lie.




5  To be a good liar, one has to understand other people's emotions.


1. Answer: YES
2. Answer: YES
3. Answer: NOT GIVEN
4. Answer: NO
5. Answer: YES

Questions 6-9

Choose the correct letter A, B, C or D.
Write your answers in boxes 6-9.
6 How does the lie detector work?
A It detects whether one's emotional state is stable.
B It detects one’s brain activity level.
C It detects body behavior during one's verbal response.
D It analyses one's verbal response word by word.
6. Answer: C
7 Lie detectors can't be used as evidence in a court of law because
A Lights often cause lie detectors to malfunction.
B They are based on too many verbal and non-verbal clues.
C Polygraph tests are often inaccurate.
D There may be many causes of certain body behavior.
7. Answer: D
8 Why does the author mention the paralyzed patients?
A To demonstrate how a paralyzed patient smiles
B To show the relation between true emotions and body behavior
C To examine how they were paralyzed
D To show the importance of happiness from recovery
8. Answer: B
9 The author uses politicians to exemplify that they can
A Have emotions.
B Imitate actors.
C Detect other people's lives.
D Mask their true feelings.
9. Answer: D

Questions 10-13


10 Inner corners of eyebrows raised

11 The whole eyebrows lowered




12  Lines formed around






13  Lines form above eyebrows



10. Answer: A
11. Answer: B
12. Answer: C
13. Answer: A

READING PASSAGE 2

You should spend about 20 minutes on Questions 14-26, which are based on Reading Passage 2 below.

Being Left-handed in a Right-handed World

The world is designed for right-handed people. Why does a tenth of the population prefer the left?
A The probability that two right-handed people would have a left-handed child is only about 9.5 percent. The chance rises to 19.5 percent if one parent is a lefty and 26 percent if both parents are left-handed. The preference, however, could also stem from an infant’s imitation of his parents. To test genetic influence, starting in the 1970s British biologist Marian Annett of the University of Leicester hypothesized that no single gene determines handedness. Rather, during fetal development, a certain molecular factor helps to strengthen the brain’s left hemisphere, which increases the probability that the right hand will be dominant, because the left side of the brain controls the right side of the body, and vice versa. Among the minority of people who lack this factor, handedness develops entirely by chance. Research conducted on twins complicates the theory, however. One in fivesets of identical twins involves one right-handed and one left-handed person, despite the fact that their genetic material is the same. Genes, therefore, are not solely responsible for handedness.
B Genetic theory is also undermined by results from Peter Hepper and his team at Queen’s University in Belfast, Ireland. In 2004 the psychologists used ultrasound to show that by the 15th week of pregnancy, fetuses already have a preference as to which thumb they suck. In most cases, the preference continued after birth. At 15 weeks, though, the brain does not yet have control over the body’s limbs. Hepper speculates that fetuses tend to prefer whichever side of the body is developing quicker and that their movements, in turn, influence the brain’s development. Whether this early preference is temporary or holds up throughout development and infancy is unknown. Genetic predetermination is also contradicted by the widespread observation that children do not settle on either their right or left hand until they are two or three years old.
C But even if these correlations were true, they did not explain what actually causes left-handedness. Furthermore, specialization on either side of the body is common among animals. Cats will favor one paw over another when fishing toys out from under the couch. Horses stomp more frequently with one hoof than the other. Certain crabs motion predominantly with the left or right claw. In evolutionary terms, focusing power and dexterity in one limb is more efficient than having to train two, four or even eight limbs equally. Yet for most animals, the preference for one side or the other is seemingly random. The overwhelming dominance of the right hand is associated only with humans. That fact directs attention toward the brain’s two hemispheres and perhaps toward language.
D Interest in hemispheres dates back to at least 1836. That year, at a medical conference, French physician Marc Dax reported on an unusual commonality among his patients. During his many years as a country doctor, Dax had encountered more than 40 men and women for whom speech was difficult, the result of some kind of brain damage. What was unique was that every individual suffered damage to the left side of the brain. At the conference, Dax elaborated on his theory, stating that each half of the brain was responsible for certain functions and that the left hemisphere controlled speech. Other experts showed little interest in the Frenchman’s ideas. Over time, however, scientists found more and more evidence of peopleexperiencing speech difficulties following injury to the left brain. Patients with damage to the right hemisphere most often displayed disruptions in perception or concentration. Major advancements in understanding the brain’s asymmetry were made in the 1960s as a result of so-called split-brain surgery, developed to help patients with epilepsy. During this operation, doctors severed the corpus callosum—the nerve bundle that connects the two hemispheres. The surgical cut also stopped almost all normal communication between the two hemispheres, which offered researchers the opportunity to investigate each side’s activity.
E  In 1949 neurosurgeon Juhn Wada devised the first test to provide access to the brain’s functional organization of language. By injecting an anesthetic into the right or left carotid artery, Wada temporarily paralyzed one side of a healthy brain, enabling him to more closely study the other side’s capabilities. Based on this approach, Brenda Milner and the late Theodore Rasmussen of the Montreal Neurological Institute published a major study in 1975 that confirmed the theory that country doctor Dax had formulated nearly 140 years earlier: in 96 percent of right-handed people, language is processed much more intensely in the left hemisphere. The correlation is not as clear in lefties, however. For two thirds of them, the left hemisphere is still the most active language processor. But for the remaining third, either the right side is dominant or both sides work equally, controlling different language functions. That last statistic has slowed acceptance of the notion that the predominance of right-handedness is driven by left-hemisphere dominance in language processing. It is not at all clear why language control should somehow have dragged the control of body movement with it. Some experts think one reason the left hemisphere reigns over language is because the organs of speech processing—the larynx and tongue—are positioned on the body’s symmetry axis. Because these structures were centered, it may have been unclear, in evolutionary terms, which side of the brain should control them, and it seems unlikely that shared operation would result in smooth motor activity. Language and handedness could have developed preferentially for very different  reasons  as  well.  For  example,  some  researchers,  including evolutionary psychologist Michael C. Corballis of the University of Auckland in New Zealand, think that the origin of human speech lies in gestures. Gestures predated words and helped language emerge. If the left hemisphere began to dominate speech, it would have dominated gestures, too, and because the left brain controls the right side of the body, the right hand developed more strongly.
 Perhaps we will know more soon. In the meantime, we can revel in what, if any, differences handedness brings to our human talents. Popular wisdom says right-handed, left-brained people excel at logical, analytical thinking. Lefthanded, right-brained individuals are thought to possess more creative skills and may be better at combining the functional features emergent in both sides of the brain. Yet some neuroscientists see such claims as pure speculation. Fewer scientists are  ready to claim that left-handedness means greater creative potential. Yet lefties are prevalent among artists, composers and the generally acknowledged great political thinkers. Possibly if these individuals are among the lefties whose language abilities are evenly distributed between hemispheres, the intense interplay required could lead to unusual mental capabilities.
G Or perhaps some lefties become highly creative simply because they must be more clever to get by in our right-handed world. This battle, which begins during the very early stages of childhood, may lay the groundwork for exceptional achievements.
SECTION 2: QUESTIONS 14-26

Questions 14-18

14
Preference of using one side of the body in animal species.
15
How likely one-handedness is born.
16
The age when the preference of using one hand is settled.
17
Occupations usually found in left-handed population.
18
A reference to an early discovery of each hemisphere’s function
14. Answer: C
15. Answer: A
16. Answer: B
17. Answer: F
18. Answer: D

Questions 19-22

19 Marian Annett
20  Peter Hepper
21   Brenda Milner & Theodore Rasmussen
22 Michael Corballis
19. Answer: B
20. Answer: F
21. Answer: D
22. Answer: A

Questions 23-26

23 *** The study of twins shows that genetic determinationis not the only factor for left-handedness.
24 *** Marc Dax’s report was widely accepted in his time.
25 *** Juhn Wada based his findings on his research of people with language problems.
26 ***  There tend to be more men with left-handedness than women.